
Tetrahedron Letters No. 46, pp 4471 - 4474. © Pergamon Press Ltd. 1979. Printed in Great Britain.

ELECTROSYNTHESIS OF HETEROATOM-HETEROATOM BONDS. 5. DIRECT CROSS-COUPLING OF DIALKYLPHOSPHITES WITH AMINES BY AN IODONIUM ION-PROMOTED ELECTROLYTIC PROCEDURE Sigeru Torii^{*}, Noboru Sayo, and Hideo Tanaka

Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama 700, Japan

<u>Summary</u>: An efficient direct cross-coupling procedure of dialkylphosphites with amines by an iodonium ion-promoted electrolysis, giving N-substituted dialkyl phosphoramidates, has been proposed.

Our interest in direct formation of S-S,¹ S-N,^{2,3} and S-P⁴ bonds by electrochemical Procedures has spurred continuing efforts to develope phosphorous nitrogen coupling reactions. The present paper deals with straightforward iodonium ion-promoted electrosynthesis of N-substituted dialkyl phosphoramidates 3^5 from dialkoxyphosphates 1 with amines 2.

A typical electrolysis procedure is shown as follows: A solution of diethyl phosphite (1, R = Et, 138 mg), diethylamine (2, R = Et, 80 mg), and sodium iodide (20 mg) in acetonitrile (20 ml) containing Et_4NClO_4 (100 mg) as a supporting electrolyte was electrolyzed at a constant voltage of 3V (2.5 F/mol based on 1), at 25-30 °C in an undivided cell equiped with two platinum-foil electrodes. The current density varied from 6 to 0.8 mA/cm² during the electrolysis and the workup gave 92% yield of 3. Lack of sodium iodide in the electrolysis media provided trace of 3, indicating that the iodide played an important role in the P-N bond making reaction. Some results of the novel electrosynthesis of the phosphoramidates 3 are listed in Table 1.

Subsequently, our attention was focused on the effect of halide salts in the electrolysis

Entry	Phosphite <u>1</u> Amine <u>2</u>		Current Density/ (Electricity)		Time	Phosphoramides	
	R		mA/cm	2 (F/mol)	h		
1	Methyl	Propylamine	9.3-0.4	(2.5)	5.0	79 ⁶	
2	Methyl	Isopropylamine	6.7-0.3	(2.6)	10.3	807	
3	Methyl	t-Butylamine	5.0-0.3	(2.5)	10.8	83 ⁸	
4	Methyl	Benzylamine	7.0-1.0	(2.5)	4.6	69 ⁸	
5	Methyl	Diethylamine	9.0-1.8	(2.5)	2.4	81 ⁹	
6	Methyl	Dibutylamine	5.5-1.1	(2.6)	6.0	7410	
7	Methyl	Morpholine	5.0-0.7	(3.0)	7.0	8611	
8	Methyl	Piperidine	8.0-1.1	(2.6)	3.5	829	
9	Methyl	Pyrrolidine	10.3-6.1	(2.5)	1.8	79 ⁸	
10	Ethyl	Propylamine	7.3-0.8	(2.5)	4.2	88 ⁶	
11	Ethyl	Isopropylamine	7.3-0.8	(2.6)	4.8	79 ¹²	
12	Ethyl	t-Butylamine	6.5-0.4	(2.5)	6.6	79 ¹³	
13	Ethyl	Benzylamine	6.3-1.3	(2.6)	4.7	708	
14	Ethyl	Diethylamine	6.0-0.8	(2.5)	4.8	92 ¹⁴	
15	Ethyl	Dibutylamine	8.3-2.1	(2.5)	2.6	83 ¹⁰	
16	Ethyl	Morpholine	5.0-0.3	(2.5)	9.7	89 ¹¹	
17	Ethyl	Piperidine	5.5-0.6	(2.5)	5.0	91 ¹⁵	
18	Ethyl	Pyrrolidine	8.3-2.9	(2.6)	3.0	86 ⁸	
19	Isopropyl	Propylamine	7.0-0.8	(2.5)	6.4	748	
20	Isopropyl	Isopropylamine	6.7-0.3	(2.5)	11.1	8116	
21	Isopropyl	t-Butylamine	6.0-0.2	(2.4)	11.7	65 ⁸	
22	Isopropyl	Benzylamine	8.3-0.6	(2.7)	6.4	79 ⁸	
23	Isopropyl	Diethylamine	8.0-2.0	(2.6)	3.8	8317	
24	Isopropyl	Dibutylamine	6.3-1.0	(2.6)	4.8	70 ¹⁰	
25	Isopropyl	Morpholine	7.0-0.9	(2.5)	3.8	79 ¹¹	
26	Isopropyl	Piperidine	9.0-1.4	(2.7)	3.6	848	
27	Isopropyl	Pyrrolidine	8,3-1.2	(2.6)	3.1	908	

Table 1. Electrolytic Cross-Coupling of Dialkyl Phosphites 1 with Amines 2

solution. Previous works reveal that S-N and S-P bonds making reactions take place preferentially in the presence of sodium bromide as a catalytic additive.^{2,3} However, in the present electrolysis, the preparation of P-N bond using sodium bromide as well as sodium chloride did not succeed, since the current dropped to zero before the cross-coupling

Entry	Supporting Electrolyte	Current Density mA/cm ²	Electricity F/mol	Time h	Phosphoramide Yield, %
1	NaI	6.0 - 0.8	2.5	4.8	92
2	LiI	4.4 - 3.4	2.7	3.1	82
3	KI	5.8 - 2.1	2.8	4.2	81
4	NH ₄ 1	8.5 - 5.1	2.5	1.9	85
5	CuI	7.0 - 6.0	2.5	1.9	71
6	NaCl	4.7 - 0	0.8	25	4
7	NaBr	2.5 - 0	1.4	31	35
8	1 ₂	·		24*	21
9	I ₂	8.3 - 6.0	2.5	1.6	94

Table 2. Effect of Alkali Halides on Electrolytic Cross-Coupling of $\underline{1}$ (R = Et) with 2 (R = Et).

* Stirred without passing electricity.

21⁻

reaction of <u>1</u> with <u>2</u> completed (Table 2, entries 6 and 7). But, the surprising feature of salts in the media was observed in the P-N bond making electrolysis as shown in entries 1-5, since the iodide salts-promoted electrolyses could give <u>3</u> in 71-92% yields. Addition of iodine also gave a good result (entry 9). The effect of iodine is complex but these data are interesting in finding a characteristic contribution of iodine for the preferential formation of <u>3</u>.

The oxidation of $(RO)_2P(O)H-R^1_2NH-Metal I$ system is generally considered to proceed by discharge of iodide on the anode.¹⁸ Thus, the iodonium ion-promoted reaction is considered tentatively to proceed in the manner as shown in the following equations (2-6).

$$- \xrightarrow{-2e} I_2$$
 (2)

$$(RO)_2 P(0)H + I_2 \longrightarrow (RO)_2 P(0)I + HI$$
 (3)

$$(\text{RO})_2 P(\text{O}) \text{I} + \text{HNR}_2^1 \longrightarrow (\text{RO})_2 P(\text{O}) \text{NR}_2^1 + \text{HI}$$
(4)

$$R^{1}_{2}NH + I^{\dagger} \longrightarrow R^{1}_{2}NI + H^{\dagger}$$
(5)

$$R_{2}^{1}NI + (RO)_{2}P(O)H \longrightarrow (RO)_{2}P(O)NR_{2}^{1} + HI$$
 (6)

However, there are ambiguous questions of why iodides and iodine are the most influential additives among halide salts in the electrochemical P-N bond formation and also why other halides tend to decrease current during the electrolysis in spite of the presence of Et,NClO, as a supporting electrolyte. We are continuing to study the role of iodine

in the electrolysis media.

References and Notes

- S. Torii, H. Tanaka, and K. Misima, Bull. Chem. Soc. Jpn., <u>51</u>, 1575 (1978). 1.
- S. Torii, H. Tanaka, and M. Ukida, J. Org. Chem., <u>43</u>, <u>3223</u> (1978). 2.
- 3.
- S. Torii, H. Tanaka, and M. Ukida, J. Org. Chem., 44, 1554 (1979). S. Torii, H. Tanaka, and N. Sayo, J. Org. Chem., 44, August Issue (1979). 4.
- 5. A series of the phosphoramidates 3 have been known for their potential insecticidal activities: D. G. Coe, H. Hurtig, B. J. Perry, and E. S. Sherlock, J. Agr. Food Chem., 7, 251 (1959); Brit., 833.863; U. S. 2,765,252. Most of 3 have been prepared from the reaction of either dialkoxyphosphoryl halides with amines or N-halogenated amines with phosphites using excess amines (see ref. 9 and 14).
- K. V. Nikonorov, E. A. Gurylev, and V. V. Chernova, Izv. Akd. Nauk SSSR, Ser. Khim. 6. 587 (1968); Chem. Abstr., <u>69</u>, 95864w (1968).
- N. Affinerie and P. Spiess, Brit. 1960, 833,863; Chem. Abstr., 55, 456e (1961).
- 8. All new compounds had correct C, H, analyses. Spectral data were in accord with assigned structures.
- J. Cheymol, P. Chabrier, M. Selim, and T. N. Thanh, Compt. rend., 249, 1240 (1959); Chem. Abstr., 54, 7703i (1960), J. Cheymol, P. Chabrier, R. J. P. Hazard, M. Serim, and Thuong Nguyen Thanh, Fr. 1960, 1,239,989; Chem. Abstr., 58, 1346a (1963). 9.
- M. Halmann and S. Pinchas, J. Chem. Soc., 626 (1953). 10.
- B. A. Arbuzov, V. M. Zorastrova, and R. Kh Sagitova, Izv. Akad. Nauk SSSR, Ser. 11. Khim., 661 (1964); Chem. Abstr., 61, 3099a (1964). D. R. Moore, S. E. Ross, and G. C. Tesoro, U. S. 1970, 3,527,564 (Cl. 23-209.5;
- 12. C Olb); Chem. Abstr., 73, 110787b (1970). W. S. Wadsworth, Jr. and W. D. Emmons, J. Org. Chem., 29, 2816 (1964).
- 13.
- K. A. Petrov and G. A. Sokol'skii, Zhur. Obshchei Khim., 26, 3378 (1956); Chem. 14. Abstr., <u>51</u>, 8029b (1957).
- D. G. Coe, H. Hurtig, B. J. Perry, and E. S. Sherlock, J. Agr. Food Chem., 7, 251 15. (1959).
- 16. M. I. Kabachnik and V. A. Gilyarov, Akad. Nauk S. S. S. R., Otder. Khim. Nauk, 816 (1961); Chem. Abstr., <u>55</u>, 27014c (1961). P. Malatesta, Farmaco, Ed. sci., 8, 193 (1953); Chem. Abstr., <u>47</u>, 12077f (1953). T. Shono, Y. Matsumura, J. Hayashi, and M. Mizoguchi, Tetrahedron Lett., <u>1979</u>, 165;
- 17.
- 18. G. Dryhurst and P. J. Elving, Anal. Chem., 39, 606 (1967).

(Received in Japan 28 July 1979)